# Area and Volume (Calculus)

## 15 questions

See Preview
• 1. Multiple Choice
30 seconds
1 pt

Select the formula for finding area under a curve bounded by the x axis.

$\int_a^bf\left(x\right)dx$

$\int_a^b\left[f\left(x\right)-g\left(x\right)\right]\ dx$

$\int_a^b\left[f\left(x\right)\right]^2dx$

$\pi\int_a^bf\left(x\right)dx$

• 2. Multiple Choice
30 seconds
1 pt

Find the integral for the area under the curve.

$\int_{-6}^{-2}\ 2\left(x^2\ +\ 6x\ +\ 10\right)\ dx$

$\int_{-6}^{-2}\ -2\left(x^2\ +\ 6x\ +\ 10\right)\ dx$

$\int_{-6}^{-2}\ \left(x^2\ +\ 6x\ +\ 10\right)\ dx$

$\int_{-6}^{-2}\ -4\left(x^2\ +\ 6x\ +\ 10\right)\ dx$

• 3. Multiple Choice
30 seconds
1 pt

Find the integral that would find the area of the region enclosed by the curves.

$\int_0^5\left[\left(-\frac{x^2}{2}+4x-3\right)-\left(-x^2+6x-8\right)\right]dx$

$\int_1^5\left[\left(-x^2+6x-8\right)-\left(-\frac{x^2}{2}+4x-3\right)\right]dx$

$\int_1^5\left[\left(-\frac{x^2}{2}+4x-3\right)-\left(-x^2+6x-8\right)\right]dx$

$\int_0^5\left[\left(-x^2+6x-8\right)-\left(-\frac{x^2}{2}+4x-3\right)\right]dx$