No student devices needed. Know more
Upgrade your player limit now and unlock additional features
9 questions
∫01(3x2−6x+4)dx \int_0^1\left(3x^2-6x+4\right)dx\ \ ∫01(3x2−6x+4)dx este egală cu
1
2
-2
12\frac{1}{2}21
∫01 1x2+1dx\int_0^1\ \frac{1}{x^2+1}dx∫01 x2+11dx este egală cu
π4\frac{\pi}{4}4π
π3\frac{\pi}{3}3π
−π4-\frac{\pi}{4}−4π
∫12 14−x2dx\int_1^{\sqrt{2}}\ \frac{1}{\sqrt{4-x^2}}dx∫12 4−x21dx este egală cu
π12\frac{\pi}{12}12π
π2\frac{\pi}{2}2π
−π2-\frac{\pi}{2}−2π
π6\frac{\pi}{6}6π
∫35 1x2−9dx\int_3^5\ \frac{1}{\sqrt{x^2-9}}dx∫35 x2−91dx este egală cu
ln 95\ln\ \frac{9}{5}ln 59
ln 59\ln\ \frac{5}{9}ln 95
ln 19\ln\ \frac{1}{9}ln 91
∫02 1x2−36dx\int_0^2\ \frac{1}{x^2-36}dx∫02 x2−361dx este egală cu
e2e^2e2
ln 12\ln\ \frac{1}{2}ln 21
∫−10 2xdx\int_{-1}^0\ 2^xdx∫−10 2xdx este egală cu
1ln2\frac{1}{\ln2}ln21
2−12^{-1}2−1
12ln2\frac{1}{2\ln2}2ln21
14\frac{1}{4}41
∫0π(1+sinx)dx\int_0^{\pi}\left(1+\sin x\right)dx∫0π(1+sinx)dx este egală cu
π\piπ
π+2\pi+2π+2
2π2\pi2π
∫12(3x2+1x−2)dx\int_1^2\left(3x^2+\frac{1}{x}-2\right)dx∫12(3x2+x1−2)dx este egală cu
ln2\ln2ln2
3+ln23+\ln23+ln2
5+ln25+\ln25+ln2
∫01(x−2)2dx\int_0^1\left(x-2\right)^2dx∫01(x−2)2dx este egală cu
73\frac{7}{3}37
13\frac{1}{3}31
111
Expore all questions with a free account
Continue with Google
Continue with Microsoft
Continue with Facebook
Continue with email
Continue with phone