QUIZ
Pythagorean Identities
Save
Copy and Edit
INSTRUCTOR-LED SESSION
Start a live quiz
ASYNCHRONOUS LEARNING
Assign homework
10 questions
Preview
• Question 1
30 seconds
Report an issue
Q.

$\sin^2x\ -1=?$

$-\cos^2x$

$\cos^2x$

$\cos^2x-1$

$1-\cos^2x$

• Question 2
30 seconds
Report an issue
Q.

$\tan^2x\ =?$

$\sec^2x-1$

$\sec^2x+1$

$1-\sec^2x$

• Question 3
30 seconds
Report an issue
Q.

Which of the following is not a Pythagorean Identity?

$\cot^2x+1=\csc^2x$

$\cot^2x-\csc^2x=-1$

$\csc^2x+1=\cot^2x$

$\csc^2x-\cot^2x=1$

• Question 4
20 seconds
Report an issue
Q.

$1-\cos^2x=?$

$\sin^2x$

$\tan^2x$

$\cot^2x$

$\csc^2x$

• Question 5
30 seconds
Report an issue
Q.

$\csc^2x=?$

$1+\cot^2x$

$1-\cot^2x$

$\cot^2x-1$

• Question 6
20 seconds
Report an issue
Q.

$1-\sin^2x=?$

$\tan^2x$

$\cos^2x$

$\cot^2x$

$\csc^2x$

• Question 7
20 seconds
Report an issue
Q.

$\frac{\left(\sin x\right)}{\left(\cos x\right)}=?$

$\csc x$

$\sec x$

$\cot x$

$\tan x$

• Question 8
30 seconds
Report an issue
Q.

Which of the following is NOT a Pythagorean Identity?

$\tan^2x+1=\sec^2x$

$\cos2x=\cos^2x-\sin^2x$

$\sin^2x+\cos^2x=1$

$1+\cot^2x=\csc^2x$

• Question 9
20 seconds
Report an issue
Q.

$\cos^2x+\sin^2x=?$

$1$

$\csc^2x+\sec^2x$

$\sin^2x$

$1-\sin^2x$

• Question 10
30 seconds
Report an issue
Q.

Rewrite tan(x) in terms of sin(x) and cos(x)

tan(x) = cos(x) / sin(x)

tan(x) = 1 / cot(x)

tan(x) = sin(x) / cos(x)

Report an issue