No student devices needed. Know more
20 questions
dxd[e2x + 3x2+5]
e2x+ 6x2
2e2x +6x
2ex+6x
none of these
∫e5xdx =
e5x+c
5e5x+c
51e5x+c
none of these
∫(cos x + 3x2)dx =
-sin x + x3 + c
sinx + x3 + c
-sin x + 6x
🌞
∫ x+32dx=
2ln|x+3| + c
2ln(x + 3) + c
21ln∣x + 3∣ + c
none of these
∫cos(4x+5)dx
-¼sin(4x + 5) + C
4sin(4x + 5) + C
¼sin(4x + 5) + C
4cos(4x + 5) + C
∫(x4−ex)dx
4ln(x)−ex
4ln(x)+ex+C
4ln(x)−ex+C
x24−4ex+C
Which of the following is TRUE ?
∫sin x dx = cos x +c
∫ex dx = x+1ex+1 + c
∫ x1 dx = ln ∣x ∣ +c
∫ x dx = 1 + c
∫x3 −π dx =
3x2 + c
4x4 + c
4x4 − πx
4x4 − πx + c
What is ∫ x65 dx ?
5x−6 + c
5x−5 + c
−4x45 + c
−x51 + c
Integrate ∫cos (5x) dx with respect to x.
sin (5x) + c
−51sin (5x) + c
51 sin (5x) + c
5cos (5x) + c
Which is the integral of ∫ (5−3x)3 dx ?
3(5−3x)2 +c
4(5−3x)4+ c
12(5−3x)4+ c
−12(5−3x)4+ c
Which of the following is NOT one of techniques of Integration?
Substitution
By Part
Quotient Rule
Partial Fraction
Using integration by part, if given that u = (x + 1) then find v for ∫(x +1) e2x dx
2x2+x
e2x
2e2x
2e2x
Integrate the partial fraction with respect to x
∫ (x)1 + (2x −1 )4 dx
ln ∣x∣ + 8 ln∣2x−1∣+c
ln ∣x∣ + 4 ln ∣x−1∣+c
ln ∣x∣ + 4 ln∣2x−1∣+c
ln ∣x∣ + 2 ln∣2x−1∣+c
Evaluate ∫12 3x2 dx
7
8
12
x3
Evaluate the integral ∫02 x2x3 + x2 dx
2
4
6
8
If y = axn , then ∫y dx =
n+1axn+1
n−1axn−1+ c
naxn+1+ c
n+1axn+1+ c
Explore all questions with a free account