Skip to Content

Build your own quiz

No student devices needed. Know more

10 questions

Show Answers

See Preview

- 1. Multiple-choice5 minutes1 ptConverting parametric equations to a rectangular equation is called _________________ the parameter.eliminatingfindingconvertingjumping
- 2. Multiple-choice30 seconds1 ptEliminate the parameter from x(t) = t
^{2}+ 5 and y(t) = t^{2}- 4. Which of the following sketches results?LinearQuadraticQuarticSquare Root - 3. Multiple-choice2 minutes1 pt
Find the point based on the parametric equations. t = 3

x = 1 - 2t

y =4t + 1

(-5, 13)

(13, -5)

(5, 13)

(13, 5)

- 4. Multiple-choice2 minutes1 pt
Find the ordered pair based on the parametric equations.

t = -2

x = t

^{2}- 2y = -t + 2

(2, 4)

(4, 2)

(-6, 0)

(0,-6)

- 5. Multiple-choice2 minutes1 pt
Write the rectangular equation for the following parametric equations.

x = 4cosθ

y = 3sinθ

^{}$\frac{x^2}{9}+\frac{y^2}{16}=1$

$\frac{y^2}{9}+\frac{x^2}{16}=1$

$\cos^2\theta+\sin^2\theta=1$

$\frac{x^2}{9}-\frac{y^2}{16}=1$

- 6. Multiple-choice30 seconds1 pt
The variable "t" is called a

parameter

parallel

paralegal

paradise

- 7. Multiple-choice15 minutes1 ptWhat is the center and radius of the curve:

x=1+3cost

y=-2+3sint(-1,2) , r=3(-1,2) , r=9(1,-2) , r=3(1,-2) , r=9 - 8. Multiple-choice30 seconds1 ptSketch the curve of x(t) = 2t + 1 and y(t) = t
^{2}+ 2.A*B*CD - 9. Multiple-choice30 seconds1 ptWhich set of parametric equations satisfies the given data table?x(t) = t
^{3}- 1

y(t) = 2tx(t) = t^{3}- 1

y(t) = t + 2x(t) = t + 8

y(t) = t + 2x(t) = t + 8

y(t) = 2t - 10. Multiple-choice2 minutes1 ptWrite x = 2t and y = t
^{2}+ 3 in rectangular form .y = 4x^{2}+ 3y = ¼ x^{2}+ 3y = 4t^{2 }+ 12y = (x - 2)^{2}+ 3