Mathematics

University

Image

Partial Differentiation

161
plays

7 questions

Show Answers
See Preview
  • 1. Multiple Choice
    5 minutes
    1 pt

    Find the first order partial derivative with respect to y
     f(x,y)=x3y2+3xeyf(x,y)=x^3y^2+3xe^y  
    .

     fy(x,y)=3x2y2+3eyf_y(x,y)=3x^2y^2+3e^y  

     fy(x,y)=3x2y2+2x3y+3ey+3xeyf_y(x,y)=3x^2y^2+2x^3y+3e^y+3xe^y  

     fy(x,y)=2x3y+3xeyf_y(x,y)=2x^3y+3xe^y  

     fy(x,y)=6x2+3eyf_y(x,y)=6x^2+3e^y  

  • 2. Multiple Choice
    5 minutes
    1 pt

    Find the second order partial derivatives of   f(x,y)=(3x+2y)4f(x,y)=(3x+2y)^4  

     fxx(x,y)=12(3x+2y)2 ,  fyy(x,y)=24(3x+2y)2f_{xx}(x,y)=12(3x+2y)^2\ ,\ \ f_{yy}(x,y)=24(3x+2y)^2  

     fxx(x,y)=36(3x+2y)2  ,  fyy(x,y)=8(3x+2y)3f_{xx}(x,y)=36(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=8(3x+2y)^3  

     fxx(x,y)=24(3x+2y)2  ,  fxy(x,y)=32(3x+2y)f_{xx}(x,y)=24(3x+2y)^2\ \ ,\ \ f_{xy}(x,y)=32(3x+2y)  

     fxx(x,y)=108(3x+2y)2  ,  fyy(x,y)=48(3x+2y)2f_{xx}(x,y)=108(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=48(3x+2y)^2  

  • 3. Multiple Choice
    15 minutes
    1 pt

     What is the mixed, second order partial derivative of this function.  f(x,y)=2x2+y2f\left(x,y\right)=\sqrt{2x^2+y^2} 

     fxx(x,y)=2(2x2+y2)124x2(2x2+y2)32f_{xx}(x,y)=2(2x^2+y^2)^{-\frac{1}{2}}-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

     fxy(x,y)=2xy(2x2+y2)32fxy(x,y)=-2xy\left(2x^2+y^2\right)^{-\frac{3}{2}}  

     fyy(x,y)=(2x2+y2)12y2(2x2+y2)32f_{yy}(x,y)=(2x^2+y^2)^{-\frac{1}{2}}-y^2(2x^2+y^2)^{-\frac{3}{2}} 

     fxy(x,y)=4x2(2x2+y2)32f_{xy}(x,y)=-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

  • Answer choices
    Tags
    Answer choices
    Tags

    Explore all questions with a free account

    Already have an account?