No student devices needed. Know more
7 questions
Find the first order partial derivative with respect to y
f(x,y)=x3y2+3xey
.
fy(x,y)=3x2y2+3ey
fy(x,y)=3x2y2+2x3y+3ey+3xey
fy(x,y)=2x3y+3xey
fy(x,y)=6x2+3ey
Find the second order partial derivatives of f(x,y)=(3x+2y)4
fxx(x,y)=12(3x+2y)2 , fyy(x,y)=24(3x+2y)2
fxx(x,y)=36(3x+2y)2 , fyy(x,y)=8(3x+2y)3
fxx(x,y)=24(3x+2y)2 , fxy(x,y)=32(3x+2y)
fxx(x,y)=108(3x+2y)2 , fyy(x,y)=48(3x+2y)2
What is the mixed, second order partial derivative of this function. f(x,y)=2x2+y2
fxx(x,y)=2(2x2+y2)−21−4x2(2x2+y2)−23
fxy(x,y)=−2xy(2x2+y2)−23
fyy(x,y)=(2x2+y2)−21−y2(2x2+y2)−23
fxy(x,y)=−4x2(2x2+y2)−23
if f(x,y)=x3−2xy+xy3+3y2 which of the following is true?
fx(x,y)=3x2−2y+y3 fy(x,y)=−2x+6y+3xy2 fxy(x,y)=6x
fx(x,y)=−2x+6y+3xy2 fy(x,y)=3x2−2y+y3 fxy(x,y)=−2+3y2
fxx(x,y)=6x fyy(x,y)=6+6xy
fxy(x,y)=−2+3y2
fxx(x,y)=6+6xy fyy(x,y)=6x
fxy(x,y)=−2+3y2
Find fx and fy from the equation f(x,y)= ln(x2y3)
fx=x1 fy=2y3
fx=xy1 fy=2y3x
fx=x1 fy=23x
fx=y3x2 fy=2y33x2
Find the Partial derivative of f with respect to y for f(x,y)=x+yy2
(x+y)22x+y
(x+y)22xy+y2
(x+y)2
(x+y)22x2+y2
Find ∂x∂z for z=x2y2exy
xy2exy(xy+2)
xyexy(xy+2)
x2y2exy(xy+1)
2xy2exy(xy+1)
Explore all questions with a free account